3.7. Система смазки винтового агрегата

Масло в зависимости от типа агрегата в количестве 130—230 кг находится в маслосборнике и нижней части маслоотделителя, как показывает схема винтового компрессора. Его уровень наблюдают по смотровому стеклу Клингера или (на агрегатах типа 53-900) по круглым смотровым стеклам, в которые для удобства наблюдения вставлены поплавки белого цвета.
    Масло заправляется в агрегат от автономного насоса через вентиль, размещенный в нижней части маслосборника. Допускается использование штуцера предохранительного клапана для заливки масла в маслоотделитель, для чего клапан должен быть снят. В агрегатах типа FMS3-900 заправка производится автономным насосом через заправочный патрубок перед фильтром грубой очистки. Заполнение маслом производится до средней линии верхнего смотрового стекла маслоотделителя.
    Масло применяется для смазки трущихся поверхностей; создания гидрозатворов, препятствующих перетеканию хладагента из полости сжатия во всасывающую полость через неплотности; охлаждения хладагента в процессе сжатия; уменьшения уровня шума.

Принципиальная схема трубопроводов винтового агрегата

При работе масляного насоса (рис. 28) масло из маслосборника засасывается шестереночным насосом через фильтр грубой очистки, направляется в маслоохладитель, затем в фильтр тонкой очистки и через распределительный коллектор подается в компрессор для смазки подшипников, золотника, сальника и впрыска в полость сжатия компрессора (когда полость отсоединится от всасывающего окна). Из компрессора вместе с нагнетаемым паром масло поступает в маслоотделитель и, отделившись от хладагента, сливается в маслосборник. Подача насоса превышает потребную и указана в табл. 25. Расход масла ограничен работой редукционного клапана, который перепускает масло из маслоохладителя в маслоотделитель, а также наличием дросселирующего клапана.

Техническая характеристика шестеренчатых насосов для смахки винтовых агрегатов

Редукционный клапан настраивают на разность между давлением масла на входе в компрессор (после фильтра тонкой очистки) и давлением его в маслоотделителе (давление конденсации). Разность этих давлений должна находиться в пределах 0,2—0,3 МПа.
    В некоторых инструкциях по эксплуатации указана меньшая разность давлений, рекомендуемая для винтовых агрегатов, но практически установлено, что при разности давлений 0,1 МПа появляются задиры на поверхностях трения и прежде всего на рабочих поверхностях винтов.

    Дросселирующий клапан впрыскивания масла в рабочую полость компрессора предназначен для регулирования конечной температуры сжатия. Конус клапана имеет сверление, через которое при закрытом клапане проходит минимально допустимое количество масла. В компрессор масло подается через штуцеры на всасывающей и нагнетательной стороне, а также в объем впадин между зубьями ведущего и ведомого роторов, который называется парной полостью (рис. 29).

Циркуляция масла в винтовом компрессоре

Масло, поступающее в парную полость, называется инжекционным. Оно поступает в парную полость компрессора, пройдя через дросселирующий клапан (рис. 28). Масло смазывает зубья роторов, находящихся в зацеплении, охлаждает пар в процессе его сжатия, уплотняет зазоры между роторами и корпусом, уменьшает уровень шума.

    Масло, подаваемое на сторону всасывания компрессора, имеет полное давление, создаваемое масляным насосом и редукционным клапаном, установленным между маслоохладителем и маслоотделителем. Масло охлаждает и смазывает детали сальника, затем проходит через подшипники-втулки роторов, обеспечивая их смазку, и поступает к винтовым профилям, где смешивается со всасываемым паром.

    К стороне нагнетания масло поступает также с давлением, равным давлению насоса. Оно проходит через подшипники-втулки роторов, охлаждая и смазывая их, и одновременно это давление масла воздействует на разгрузочный поршень (рис. 30).

    Разгрузочный поршень, напрессованный на цапфу ведущего ротора, служит для уменьшения осевых усилий, воздействующих на радиально-упорные подшипники.

    При работе компрессора возникают усилия, стремящиеся сместить роторы в сторону всасывания компрессора. Шарикоподшипники препятствуют этому смещению, но их прочность для длительной работы недостаточна. Масло, поступающее к стороне нагнетания, воздействует на разгрузочный поршень, проходит между ним и втулкой поршня, смазывает шарикоподшипники и через штуцер направляется в полость всасывания ведомого ротора (см. рис. 29).

    Таким образом, за счет разности давлений до разгрузочного поршня (давление масляного насоса) и в полости шарикоподшипников (давление всасывания) разгрузочный поршень удерживает ротор от осевого смещения к стороне всасывания и уменьшает нагрузку на шарикоподшипники. Для увеличения эффективности работы разгрузочного поршня на его поверхности имеется резьбовая выточка, выполняющая задачу уплотнения и являющаяся шнеком обратной подачи.

При работе ведомого ротора на него воздействуют значительно меньшие осевые усилия. Поэтому ограничиваются установкой одного шарикоподшипника и не применяют разгрузочный поршень. Масло из шарикоподшипников ведущего ротора по внешнему трубопроводу направляется в полость всасывания ведомого ротора (см. рис. 29) и поступает в отверстие полого ведомого ротора. В этом отверстии располагается золотник, жестко прикрепленный к крышке ведомого ротора стержнем круглого сечения.

    Золотник закрывает отверстия, ведущие от полости ротора к его впадинам (рис. 31). При вращении ротора золотник неподвижен. Внешний контур золотника оформлен таким образом, чтобы при вращающемся роторе радиальные его отверстия открывались только по завершении процесса всасывания, когда впадины не связаны со всасывающим окном. Через радиальные отверстия масло поступает в парную полость, что способствует интенсивной циркуляции масла в компрессоре, создает условия для улучшения его смазки.

Циркуляция масла в роторной части винтового компрессора

Маслоотделитель как элемент системы смазки (рис. 32) является несущей конструкцией агрегата. Смесь нагнетаемого компрессором хладагента и масла, поступая в маслоотделитель, попадает на отбойный слой. Происходит грубое отделение масла, которое стекает через прорези в монтажной плите в маслоотстойник. Смесь хладагента и масла далее поступает в циклонный сепаратор, где происходит тонкое отделение масла. Хладагент, очищенный от масла, выходит через верхнее отверстие сепаратора, а масло стекает вниз. Хладагент проходит через три пакета спрессованной проволоки (фирма «Кюльаутомат» использует сливную стальную стружку), где масло окончательно отделяется от хладагента, и он через патрубок выходит из маслоотделителя. Масло из отбойного слоя, циклонного сепаратора и проволочных фильтров стекает в маслоотстойник.

Маслоотделитель винтового агрегата

При нормальном заполнении агрегата маслом уровень его должен быть примерно на 50 мм выше верхней кромки маслосборника, но не ниже этой кромки. Маслоотделитель не требует работ по техническому обслуживанию.

    Фильтр грубой очистки масла (рис. 33), установленный перед масляным насосом, позволяет отделить от масла абразивные частицы. У магнитной системы фильтра задерживаются стальные стружки и другие магнитные продукты износа. Немагнитные частицы (продукты износа антифрикционного металла, производственные загрязнения, продукты старения масла) задерживаются на поверхности перлонового сита.

Фильтр грубой очистки масла

Очистка фильтра должна производиться через 100—200 ч работы агрегата после монтажа, а затем через каждые 5000 ч его работы. Магнитную систему и перлоновую вставку промывают тетрахлорметаном, если агрегат работает на хладонах, и керосином — при использовании аммиака. Вставки продувают сжатым воздухом и просушивают, а перед установкой смазывают используемым в установке маслом.

    Уплотнительные кольца круглого сечения промывают и при необходимости заменяют. Одновременно с очисткой вставок нужно промыть корпус фильтра, вывернув пробку слива масла.
Внеочередная очистка масляного фильтра производится при нарушении режима работы масляного насоса.

    Маслоохладитель (рис. 34) служит для охлаждения масла водой. Он представляет собой одно-, двух- или трехсекционный кожухотрубный аппарат. Вода циркулирует по биметаллическим трубам (в стальные трубы запрессованы медно-никелевые). Масло проходит в межтрубном пространстве, где за счет вертикальных перегородок обеспечено поперечное омывание труб маслом. Крышки и трубные решетки защищены от коррозии эпоксидной смолой слоем 5—6 мм.

Маслоохладитель

Работы по обслуживанию маслоохладителя включают в себя проверку работы аппарата, очистку труб, проверку защитного покрытия, контроль состояния прокладок.
    После слива воды из аппарата и снятия крышек проверяют герметичность труб (по отсутствию подтекания масла).
    Очистку труб производят специальным ершом, стараясь не повредить слой эпоксидной смолы на трубных решетках. Очищать трубы следует, если температура масла перед компрессором превышает допустимое значение; через каждые 5000 ч работы; не реже чем через каждые 12 мес эксплуатации агрегата.
    При обнаружении повреждений антикоррозийного эпоксидного покрытия производят его восстановление (см. раздел 10). Воду из маслоохладителя сливают: в зимнее время с целью избежания повреждения труб и крышек при замерзании воды; при работе агрегата влажным ходом.
    Фильтр тонкой очистки масла (рис.35) устанавливается после маслоохладителя. Предназначен для фильтрации мелких абразивных частиц.

Фильтр тонкой очистки масла   Фильтр тонкой очистки масла

Работы по уходу за фильтром сводятся к промывке вставки с опорным кожухом и сеткой и продувке ее сжатым воздухом. Перед установкой вставки на место ее смазывают маслом.

    Промывка вставки должна производиться не реже чем через 5000 ч работы агрегата. При падении разности давлений масла промывка фильтра производится внепланово.

    Выполнение работ по очистке маслоохладителя и фильтров грубой и тонкой очистки масла, как правило, совмещают с очередной заменой масла. Схема винтового компрессора, где показано выполнение этих работ, приведена в следующих разделах.

    Эксплуатация любых компрессоров, особенно винтовых, с применением загрязненного или потерявшего первоначальные свойства масла экономически нецелесообразна.

    Замена масла в винтовом агрегате производится в зависимости от количества часов его работы. При использовании в качестве хладагента R-12 или R-22 масло заменяют через каждые 10 000 ч работы (подсчет наработки агрегатов производится по сменному журналу). Необходимо помнить, что из хладонового агрегата удаляется только часть масла. Остальное масло, растворенное в хладоне, находится в аппаратах системы.

    При замене минерального масла на синтетическое и наоборот необходима полная очистка от масла не только агрегата, но и всех аппаратов. В противном случае смешивание масел приведет к их сворачиванию, полной потере смазывающих свойств, что выведет агрегат из строя.

    При длительной эксплуатации хладонового агрегата, но когда количество выработанных часов невелико, масло заменяют через 2 года эксплуатации. В аммиачных агрегатах замена масла производится через каждые 5000 ч работы, но не позднее 1 года эксплуатации.

    При замене масла на несовместимое с используемым ранее производится очистка от масла всех элементов агрегата. Одновременный выпуск масла из аппаратов аммиачной установки необязателен, поскольку возврат масла в них отсутствует.

    Независимо от выполнения ремонтных и профилактических работ, проводимых в соответствии с графиком ППР, при замене масла производится очистка фильтров грубой и тонкой очистки.

    Винтовой агрегат перед выпуском должен работать не менее часа, затем его останавливают, приоткрывая вентиль S (см. рис. 28), понижают давление до 0,1—0,2 МПа, отсасывая пар другими работающими компрессорами. Масло выпускают через вентили 24 и 25. Через штуцеры или вентили выпуска воздуха полностью освобождают агрегат от хладагента. Оставшееся в системе масло выпускают, предварительно вывернув пробки в маслоотделителе, компрессоре и масляных фильтрах.

    После очистки фильтров и вакуумирования агрегата производится заполнение его маслом с помощью автономного насоса через запорный вентиль 24.